203 words
1 minute
笔记yolo的配置和使用
一、安装miniconda
https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_4.9.2-Windows-x86_64.exe

注意安装时选择D盘;两个选项都要勾选
安装完后cmd输入conda -V检查版本号
二、安装pycharm
https://download.jetbrains.com/python/pycharm-community-2024.3.exe?_gl=1*qlhwsa*_gcl_au*ODAzMDk1OTQ2LjE3NTIwNzI5MzA.*FPAU*ODAzMDk1OTQ2LjE3NTIwNzI5MzA.*_ga*MTg5MjQ4MjQ0NS4xNzUyMDcyOTMy*_ga_9J976DJZ68*czE3NTIwNzI5MzAkbzEkZzAkdDE3NTIwNzI5MzgkajUyJGwwJGgw三、配置环境
(1)配置虚拟环境:
打开cmdconda create -n yolo python==3.10.0名字可以更改(2)激活:conda activate yolo
(3)安装pytorch(依照CUDA版本)cmd输入nvidia-smi查看https://pytorch.org/get-started/previous-versions/conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia(4)检查GUP是否可用
import torchflag = torch.cuda.is_available()print(f"GPU是否可用:{flag}")device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print(device)print(torch.cuda.get_device_name(0))(4)下载Ultralytics
四、运行
(1)准备好数据文件
(2)创建一个data.yaml文件
train:C:/Users/WILL/Desktop/eggs_dataset/images/trainval: C:/Users/WILL/Desktop/eggs_dataset/images/val
nc: 2names: 0: egg 1: edge(3)Anaconda PowerShell Prompt中运行
conda activate yolov11yolo train model=yolov11m.pt data="C:/Users/WILL/Desktop/eggs_dataset/data.yaml" epochs=200 imgsz=960 batch=4 device=0 name=eggs_v2
epochs训练次数imgsz图片大小batch单次训练图片量device=0用GPU训练name创建文件夹名称