203 words
1 minute
笔记yolo的配置和使用
2025-07-09
作者:William

一、安装miniconda

https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_4.9.2-Windows-x86_64.exe

注意安装时选择D盘;两个选项都要勾选

安装完后cmd输入conda -V检查版本号

二、安装pycharm

https://download.jetbrains.com/python/pycharm-community-2024.3.exe?_gl=1*qlhwsa*_gcl_au*ODAzMDk1OTQ2LjE3NTIwNzI5MzA.*FPAU*ODAzMDk1OTQ2LjE3NTIwNzI5MzA.*_ga*MTg5MjQ4MjQ0NS4xNzUyMDcyOTMy*_ga_9J976DJZ68*czE3NTIwNzI5MzAkbzEkZzAkdDE3NTIwNzI5MzgkajUyJGwwJGgw

三、配置环境

(1)配置虚拟环境:

打开cmd
conda create -n yolo python==3.10.0
名字可以更改

(2)激活:conda activate yolo

(3)安装pytorch(依照CUDA版本)
cmd输入nvidia-smi查看
https://pytorch.org/get-started/previous-versions/
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia

(4)检查GUP是否可用

import torch
flag = torch.cuda.is_available()
print(f"GPU是否可用:{flag}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
print(torch.cuda.get_device_name(0))

(4)下载Ultralytics

四、运行

(1)准备好数据文件

(2)创建一个data.yaml文件

train:C:/Users/WILL/Desktop/eggs_dataset/images/train
val: C:/Users/WILL/Desktop/eggs_dataset/images/val
nc: 2
names:
0: egg
1: edge

(3)Anaconda PowerShell Prompt中运行

conda activate yolov11
yolo train model=yolov11m.pt data="C:/Users/WILL/Desktop/eggs_dataset/data.yaml" epochs=200 imgsz=960 batch=4 device=0 name=eggs_v2
epochs训练次数
imgsz图片大小
batch单次训练图片量
device=0用GPU训练
name创建文件夹名称
笔记yolo的配置和使用
https://zoewilliams.dpdns.org/posts/2025/2025-07-09-笔记yolo的配置和使用/
Author
William
Published at
2025-07-09
License
CC BY-NC-SA 4.0